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Power of Association and Linkage Tests When the Disease Alleles Are
Unobserved
I-Ping Tu and Alice S. Whittemore
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA

Summary

Genomewide association studies have been advocated as
a promising alternative to genomewide linkage scans for
detection of small-effect genes in complex diseases. Com-
parisons of power and sample size between the two strat-
egies have shown considerable advantages for the as-
sociation studies. These comparisons assume that the set
of markers includes the exact disease-related polymor-
phism. A concern, however, is that the power of an as-
sociation study decreases when this is not the case,
because of discrepant allele frequencies and less-
than-maximum disequilibrium between the disease-re-
lated polymorphism and its nearest marker. Here, we
quantify this concern by comparing the sample sizes
needed by the two strategies when the markers exclude
the disease-related polymorphism. For affected sib pairs
and their parents, we found that incomplete disequilib-
rium and differing allele frequencies can have substantial
negative impact on the power of association studies, re-
sulting, in some circumstances, in little gain and even in
loss of power, compared with linkage analysis. We pro-
vide some guidelines for choosing between strategies, for
the detection of genes for complex diseases.

Introduction

For some diseases with complex genetic etiologies, con-
flicting results have emerged from case-control studies
of association between specific markers and disease,
compared with linkage analyses based on allele sharing
within families. Whereas the case-control studies have
shown strong associations, the linkage tests have proved
negative (Terwillinger and Ott 1992; Spielman et al.
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1993). To explain this phenomenon, Risch and Meri-
kangas (1996) suggested that allele-sharing linkage tests
have poor power, compared with tests for association,
and that a genomewide search for associations involving
several diallelic markers within each gene (spaced ∼1 kb
apart) is more sensitive than multipoint scanning for
linkage. To support this argument, Risch and Merikan-
gas (1996) compared the number of families needed for
an affected–sib pair linkage test to that needed for an
association test based on the transmission/disequilib-
rium-test (TDT) statistic (Spielman et al. 1993). They
showed substantial reductions in sample size for the as-
sociation test, compared with the allele-sharing test, pro-
vided (1) that a multiplicative model specifies the pen-
etrances of three genotypes at a given disease locus and
(2) that the set of diallelic markers includes this locus.

With regard to the first of these assumptions, Camp
(1997) found similar sample-size reductions for additive,
dominant, and recessive penetrance models. With regard
to the second assumption, Muller-Myhsok and Abel
(1997) noted that, if less-than-maximum linkage dis-
equilibrium exists between the disease locus and the clos-
est diallelic marker and if the allele frequencies at the
disease and marker loci differ substantially, the sample
sizes necessary for the association test would be in-
creased substantially. These authors recently elaborated
on their comments with sample-size estimates for the
TDT (Abel and Muller-Myhsok 1998). These estimates
were limited to families containing a single affected
offspring, with penetrances determined by a multipli-
cative model, and they were not compared with sample
sizes needed for allele-sharing tests.

Here, we further quantify the comments of Muller-
Myhsok and Abel (1997) by comparing the sample sizes
needed for association and allele-sharing tests, under
several different penetrance models and several different
sets of assumptions about the extent of linkage disequi-
librium and the discrepancy of allele frequencies between
disease and marker loci. We found that less-than-max-
imum disequilibrium and differing frequencies between
disease and marker alleles can have substantial negative
impact on the power of the association test, resulting in
relatively little gain and sometimes even in loss of power,
compared with the allele-sharing test.
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Methods

We assume that N pairs of affected sibs and their
parents have been typed at a set of closely spaced diallelic
markers, such as single-nucleotide polymorphisms, on
an autosomal chromosome. We also assume that each
of the two alleles at any marker has a frequency of
�10% in the parental population. We wish to test the
null hypothesis that the chromosome contains no disease
locus, using tests with good power against the alternative
hypothesis that it contains a single disease locus. The
disease locus may be distinct from all the markers; how-
ever, we assume that the markers are so closely spaced
that the probability of recombination between the dis-
ease locus and its nearest marker is 0. We assume that,
at the disease locus, one allele or group of alleles, A, is
associated with increased risk of the disease, and we use
a to denote the collection of wild-type alleles at the locus.

We consider test statistics of the form ,T � max St t

where St is a function of the family genotypes at marker
locus t and where maxt denotes the maximum over the
marker loci on the chromosome. We determine a thresh-
old value c such that the null probability that T exceeds
c is ∼.05. For the reasons given in Appendix A, we set

for the allele-sharing test and for thec � 4.12 c � 5.33
association test. We then calculate the number N of fam-
ilies needed for an 80% probability that T exceeds c
when the chromosome contains a disease locus. To do
so, we approximate this probability by the quantity

�c � Nm
1 � F . (1)( )

j

Here, F is the standard Gaussian cumulative distribution
function, and and j2 are the mean and variance,�Nm

respectively, of the statistic St, at the marker locus t clos-
est to the disease locus. (Appendix A includes a justifi-
cation of approximation [1].) Equating expression (1)
to the desired power, 80%, and solving for N indicates
that the number of families needed is approximately

2c � .84j
N � . (2)( )m

Thus, to determine the sample size N for each of the
two tests, we must specify the quantities m and j2.

Linkage

For linkage, we use the means statistic S � (X �t 2,t

for the statistic St. Here, Xi,t denotes the num-�X )/ N/20,t

ber of sib pairs sharing i alleles identical by descent at
locus t, for (Suarez et al. 1978). Like Rischi � 0, 1, 2
and Merikangas (1996) and Camp (1997), we assume

that the sibs’ identity by descent at any marker can be
determined unambiguously. This is plausible because the
markers are assumed to be so closely spaced that the
four paren-
tal haplotypes are distinguishable in any chromosomal
region.

To determine m and j2 in equation (2), we note that,
when the chromosome contains a disease gene, the mean
and variance of St, at locus t of the nearest marker, equal
their values at the disease locus, because the probability
of recombination between the disease locus and its near-
est marker essentially is 0. The mean and variance at
the trait locus are and j2, respectively, with�Nm

�m � 2(p � p ) , (3)2 0

and

2j � 2p (1 � p ) � 2p (1 � p ) � 4p p . (4)2 2 0 0 2 0

Here, pi denotes the probability that an affected sib pair
shares i alleles identical by descent at the disease locus,
for . Appendix B includes equations for pi ini � 0, 1, 2
terms of the frequencies and penetrances of the two al-
leles at the disease locus.

Association

For the association test, we use the TDT statistic at
marker locus t for St. This statistic is calculated by count-
ing certain types of parental meioses. Only meioses from
parents who are heterozygous at locus t are included in
the count. Specifically, we arbitrarily label the two
marker alleles “B” and “b.” For the kth family, xkt de-
notes the number of meioses in which a heterozygous
parent transmits allele B to an offspring, minus the
number of meioses in which a heterozygous parent
transmits allele b. For example, for a family withx � 4kt

two heterozygous parents and two homozygous BB
offspring. In contrast, for a family with one het-x � 2kt

erozygous parent and two homozygous BB offspring,
for a family with two heterozygous parents,x � �2kt

one heterozygous offspring, and one homozygous bb
offspring, and if both parents are homozygousx � 0kt

or if all family members are heterozygous. The
TDT statistic at locus t is ,� ˆS � (F� x F)/ 4Nhett k kt

where is the proportion of heterozygotes among theˆhet
parents, an estimate of the prevalence het of Bb2N

heterozygotes in the parental population.
To determine the mean and variance j2 of the�Nm

statistic St at the marker locus closest to the disease-t � t

causing polymorphism, we use hi to denote the proba-
bility that a family contains i heterozygous parents, given
that both offspring are affected, for . Then,i � 0, 1, 2

. Also, let tij denote the probability that1het � h � h2 12
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Figure 1 Sample sizes needed, for 80% power, by the affected-
sib-pair linkage test (straight line) and the association test (solid,
dashed, and dotted curved lines). An additive genetic model is assumed.
The top, middle, and bottom panels give sample sizes needed for dis-
ease-allele frequencies of 5%, 10%, and 20%, respectively; in each
case, the penetrances are determined so that the disease gene accounts
for one-third of all disease occurrences. In each panel, the sample sizes
for the association test are plotted against the percentage of maximum
disequilibrium between the disease allele and the marker allele in pos-
itive disequilibrium with it, when the disease allele has a frequency of
80% (solid curved line), 50% (dashed curved line), and 20% (dotted
curved line).

Table 1

Distribution of the Differences between the
Numbers of B and b Alleles Transmitted, by
Heterozygous Parents, to Two Affected Sibs

Difference Probability

4 h2t42

2 h2t32 � h1t21

0 h0 � h1t11 � h2t22

�2 h2t12 � h1t01

�4 h2t02

NOTE.—B and b denote the two alleles at the
marker closest to the disease locus.

two affected offspring having j heterozygous parents re-
ceive i copies of allele B from these parents, for i �

and . Table 1 gives the distribution of0, 1, ..., 4 j � 1, 2
xkt in terms of these probabilities. Straightforward cal-
culation by use of this distribution shows that, for a
large N, the asymptotic distribution of St is the non-
negative part of a Gaussian distribution with mean

and variance j2. Here,�Nm

�1/2m � het [h (2t � 2t � t � t ) � h (t � t )] ,2 42 02 32 12 1 21 01

(5)

and

2 �1 [ ]j � het h (4t � 4t � t � t ) � h (t � t )2 42 02 32 12 1 21 01

�1 2[ ]�het h (2t � 2t � t � t ) � h (t � t ) .2 42 02 32 12 1 21 01

(6)

Appendix C includes equations for hi and tij in terms of
the penetrances at the disease locus, the allele frequencies
at the two loci, and the extent of disequilibrium between
them.

Results

Figures 1–4 show the sample sizes needed for the link-
age and association tests, for penetrances governed by
additive, multiplicative, dominant, and recessive models,
respectively. Sample sizes are shown for various fre-
quencies of disease allele A and allele B of the marker
nearest the disease locus and under various assumptions
about the extent of disequilibrium between the disease
and marker alleles.

The penetrance models all specify the penetrances by
, for , with . Here, F is thef � F(a � bc ) i � 0, 1, 2 c � 0i i 0

exponential function for the multiplicative model and
the identity function for the other models. For the mul-
tiplicative and additive models, ; for the recessivec � ii

model, and , whereas for thec � 0 c � 1 c � c � 11 2 1 2

dominant model. We chose the constants a and b so that
the population attributable risk (PAR) would be 33%
for all models (the PAR is the proportion of all disease
occurrences that would be eliminated if everyone had
the normal genotype at the disease locus).

For figures 1–4, the sample sizes for both tests were
obtained by use of equation (2), with m and j given by
equation (B4) for the linkage test and by equations (5)
and (6) for the association test. We assumed Hardy-
Weinberg proportions for parental genotypes at both the
disease locus and its nearest marker. Under this as-
sumption, m and j, as well as N for the linkage test,
depend on the frequencies and penetrances of the two
alleles at the disease locus. For the association test, m

and j also depend on the frequencies of alleles at the
marker locus and the extent of disequilibrium between
the two loci. In figures 1–4, this is expressed as a per-
centage of the maximum possible disequilibrium. Risch
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Figure 2 Sample sizes based on a multiplicative model. See leg-
end to figure 1 for details.

Figure 3 Sample sizes based on a dominant model. See legend
to figure 1 for details.

and Merikangas (1996) and Camp (1997) calculated
sample sizes by assuming that alleles A and B are iden-
tical, which implies equal frequencies for the two alleles
and maximum disequilibrium between them. Under
these circumstances, the sample sizes shown are roughly
comparable with those calculated by those authors, de-
spite some approximations and errors in their variance
equations (discussed in Appendix C).

Figures 1–4 show that less-than-maximum disequilib-
rium and unequal frequencies between alleles A and B
can substantially increase the sample sizes needed for the
association test. As expected from the work of Risch
and Merikangas (1996), the situation most favorable for
the association test occurs when the disease allele is com-
mon (figs. 1–4, bottom panels) and when the marker
allele in positive disequilibrium with it has roughly the
same frequency (dotted curved line). However, when the
marker allele is more common than the disease allele
(dashed and solid curved lines), the two must be in fairly
tight disequilibrium for the association test to beat the
linkage test. Moreover, the balance of power tips in-
creasingly toward the linkage test as the frequency of
the disease allele drops (figs. 1–4, top and middle panels).
Even in the case of maximum disequilibrium between
the two loci, discrepancies in the frequencies of trait and
marker alleles reduce power, with the magnitude of the

reduction increasing as the amount of discrepancy
increases.

To gain perspective on the power reduction for the
association test that is due to less-than-maximum dis-
equilibrium and to discrepancies in allele frequencies, it
is helpful to express the disequilibrium coefficient in
terms of the percentage of all B-bearing chromosomes
that also carry the disease allele A. In the optimal sit-
uation for the association test—that is, when alleles A
and B coincide—100% of all B-bearing chromosomes
carry allele A. Table 2 presents results when the fre-
quency of A is less than or equal to that of B. Table 2
shows that, for rare A alleles (overall frequency 1%) and
relatively common B alleles, as little as 1% of the B-
bearing chromosomes carry allele A. In contrast, for
equally common A alleles (overall frequency 20%) and
maximum disequilibrium, 100% of the B-bearing chro-
mosomes carry A. However, table 2 also shows that,
even when A and B are both common and have the same
frequency, less-than-maximum disequilibrium can re-
duce the prevalence of allele A among the B-bearing
chromosomes. Since diallelic markers typically are cho-
sen to have a frequency of 10%–50% in the population
(Wang et al. 1998), the presence of “false positives”
(chromosomes carrying alleles B and a) and “false neg-
atives” (chromosomes carrying alleles b and A) can have
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Figure 4 Sample sizes based on a recessive model. See legend to
figure 1 for details.

Table 2

Percentage of All B-Bearing Chromosomes That Carry a Disease
Allele

DISEASE-
ALLELE

FREQUENCY

(%)

MARKER-
ALLELE

FREQUENCY

(%)

DISEQUILIBRIUM COEFFICIENT,
BY PERCENTAGE OF MAXIMUM

33 67 100

1 20 2.3 3.7 5.0
50 1.3 1.7 2.0
80 1.1 1.2 1.3

10 20 23.3 36.7 50.0
50 13.3 16.7 20.0
80 10.8 11.7 12.5

20 20 46.7 73.3 100.0
50 26.7 33.3 40.0
80 21.7 23.3 25.0

a negative impact on the effectiveness of the association
test. The situation is closely related to that of exposure
misclassification in studies of disease cases and disease-
free controls.

Discussion

When planning a gene-identification study using af-
fected sib pairs and their parents, which analytic strategy
should be chosen—linkage or association? The results
in figures 1–4 show that the answer depends on the
anticipated frequency of the disease-related allele in the
population under study and its relation to the allele fre-
quencies of the markers used. The answer also depends
strongly on the extent of linkage disequilibrium between
the disease locus and its nearest marker. As a general
rule, even slight departures from maximum linkage dis-
equilibrium will tilt the balance in favor of the linkage
test, when the frequencies of disease and marker alleles
are highly discrepant—for example, if the disease allele
is rare (!5% frequency in the population under study)
and the positively associated allele at the marker locus
is common. If the marker allele has a frequency as high
as 80%, the linkage test is almost always more powerful.

Recently, Abel and Muller-Myhsok (1998) calculated
the number of single-affected-offspring families needed,

by the TDT, for 80% power under a multiplicative
model and under various assumptions about the dis-
parity of allele frequencies and the extent of disequilib-
rium at marker and disease loci. The sample-size in-
creases required as allele-frequency disparity increases
and as disequilibrium decreases agree well with those
found here for the multiplicative model.

In their response to the remarks of Muller-Myhsok
and Abel (1997), Risch and Merikangas (1997) noted
strong disequilibrium and comparable allele frequencies
among individuals in U.S. white populations, at least in
the regions surrounding some disease loci (e.g., the apo-
lipoprotein E region involved in Alzheimer disease and
the VNTR region on chromosome 11p). In such situa-
tions the association test should do well, relative to the
linkage test; however, there is need to determine whether
these examples hold more generally. Recent data on hap-
lotypes at 88 loci within a 9.7-kb region of the lipopro-
tein lipase gene in three populations (African Americans,
non-Hispanic U.S. whites, and Finns) suggest that the
strength of disequilibrium varies considerably from one
pair of loci to another (fig. 5 in the report by Clark et
al. [1998]).

If the objective is to evaluate a particular marker poly-
morphism of a candidate gene, it would be helpful to
estimate the marker-allele frequencies in the parental
population, before the study is started. These estimates
then could be combined with a range of plausible fre-
quencies for the (unobserved) actual disease-related
polymorphism and with a range of plausible estimates
for the disequilibrium coefficient between the two alleles,
to estimate the sample sizes needed. Both the allele fre-
quencies of the marker and disease polymorphisms and
the strength of disequilibrium can vary by ethnicity and
country of origin (Ingles et al. 1997). The results pre-
sented here show that these factors can have a substan-
tial effect on the power of the association test. Therefore,
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such variation may account for the observed lack of
consistency in findings of association, across different
national and ethnic groups.

Further work is needed so that the sample sizes cal-
culated here can be generalized to include (1) missing
parental genotypes and (2) more than two alleles at the
marker loci. Missing parental genotypes for some of the
affected sib pairs will increase the sample sizes needed
by both linkage and association tests. The relative power
loss for one test, compared with that for the other, is an
area in need of research (also see Risch and Teng, 1998).
Similarly, the effects of multiple marker alleles on both
tests need to be examined.
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Appendix A

Threshold and Power

Threshold

For linkage, we obtained a threshold value c, using
the Gaussian approximation proposed by Feingold et al.
(1993), with the intermarker distances equal to 0. Ac-
cording to this approximation, the threshold value c sat-
isfies the equation

.05 � 1 � F(c) � bLf(c) . (A1)

Here, f is the standard Gaussian density, F is the stan-
dard Gaussian cumulative distribution function, the rate
b is .04/cm, and the total chromosome length L is 3,500
cm. Solving equation (A1) for c gives .c � 4.12

For association, we assume statistical independence
of the TDT statistics St at different marker loci t. We
show in Appendix C that, under the null hypothesis, the
asymptotic marginal distribution of each St is the non-
negative part of a standard Gaussian distribution. Thus,
we use the arguments of Risch and Merikangas (1996)
to choose the threshold value .c � 5.33

Power

To determine the probability that the statistic T ex-
ceeds c—that is, that St exceeds c at some marker locus
t on the chromosome containing the disease locus—we
approximate each of the two processes St by using a
Gaussian process (see Feingold et al. [1993]). We also
write

P(T � c) � P max S � c( )t

� P S � c � P S ! c, max 1 c . (A2)( ) ( )
t t

Here, t is the locus of the marker closest to the disease
locus. Since the noncentrality of St is maximized at

and decays approximately exponentially as t movest � t

away from t, it is plausible that the first term on the
right side of equation (A2) contributes most to the prob-
ability that T exceeds c. Accordingly, the approximation
is

�c � Nm
P(T � c) ≈ P(S � c) ≈ 1 � F ,t ( )j

where and j2 are the mean and variance, respec-�Nm

tively, of St.

Appendix B

Allele-Sharing Probabilities for Affected Sibs

To determine the affected sibs’ allele-sharing proba-
bility pi at the trait locus, for , we use the usuali � 0, 1, 2
variance-component decomposition (Crow and Kimura
1970):

1p � (1 � l) ,0 4

1p � (1 � y) ,1 2

1 ( )p � 1 � l � 2y . (B1)2 4

In these equations,

1 1V � VA D2 4
l � ,

1 12K � V � VA D2 4

1 VD4
y � , (B2)

1 12K � V � VA D2 4

where K is the population prevalence of the disease and
VA and VD are the additive and dominance variance com-
ponents, respectively. The latter are defined by

2V � 2pq[p(f � f ) � q(f � f )] ,A 2 1 1 0

2 2 2V � p q (f � 2f � f ) , (B3)D 2 1 0

where fi is the penetrance for individuals with i copies
of the disease-susceptibility allele A, for , andi � 0, 1, 2
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where is the frequency of allele A. Substitutionp � 1 � q
of equation (B1) into equations (3) and (4) gives

l � y
m � ,�2

12 2j � 1 � y � (l � y) . (B4)2

Substitution of equation (B3) into equation (B2) and of
equation (B2) into equation (B4) gives the quantities m

and j2 in terms of the frequencies and penetrances of
the two alleles at the disease locus.

Appendix C

Parental Heterozygosity and Transition Probabilities

Here, we describe the parental heterozygosity prob-
ability hi and the transmission probability tij at the
marker closest to the disease-causing polymorphism.
Specifically, we express these probabilities in terms of
the frequencies and penetrances of the disease-suscep-
tibility alleles, the marker-allele frequencies, and the ex-
tent of disequilibrium between alleles at the two loci.
Our equations differ from those of Risch and Merikan-
gas (1996) and Camp (1997) in two respects. First, un-
like these authors, we did not assume conditional inde-
pendence of parental genotypes at the disease locus,
given the sibs’ affected status. Although such independ-
ence holds for the multiplicative model assumed by Risch
and Merikangas (1996), it gives only an approximate
variance for other models, such as the additive, recessive,
and dominant models considered by Camp (1997). Sec-
ond, we did not assume, as did these previous authors,
that the contributions of the two sibs to the statistic xkt

in table 1 are independent; this assumption holds under
the null hypothesis but not under the alternative
hypothesis.

Parental Heterozygosity Probabilities

Hj denotes the event that a family contains j parents
who are heterozygous at the diallelic marker nearest the
disease-causing polymorphism, for , and ASPj � 0, 1, 2
denotes the event that the two offspring are affected.
Also, GA denotes the number of copies of the disease
allele A carried by a parent, and , forv � P(G � i)AAi

. We use a similar notation—that is, GB andi � 0, 1, 2
vBi—for the number of copies of allele B at the marker.
By Bayes rule,

2v c11B1h { P(H FASP) � , (C1)2 2 P(ASP)

where cij is the probability that both offspring are af-
fected, given that their parents have B genotypes i and
j, for . Similarly,i, j � 0, 1, 2

2v (v c � v c )10 12B1 B0 B2h { P(H FASP) � , (C2)1 1 P(ASP)

and

h { P(H FASP) � 1 � h � h .0 0 1 2

We assume that parental mating is random with respect
to the parents’ genotypes at both the disease and marker
loci. We also assume that the two offsprings’ phenotypes
are conditionally independent, given their genotypes at
the disease locus. Then, the probabilitycij can be written
as

2 2

2c � P(ASPFG � i, G � j) � a r r ,��ij B B lk ki lj
k�0 l�0

where

a � alk kl

� P(one offspring is affectedFG � k, G � l)A A

and . Values for alk are given asr � P(G � iFG � j)ij A B

follows: and ; otherwise,1a � f a � (f � 2f � f )02 1 11 0 1 24

. Values for rij are given as follows:1a � (f � f )lk l k2

2 i 2�ir � p q , i � 0, 1, 2 ;i2 B B( )i

, , and ; andr � p p r � p q � p q r � q q21 B b 11 B b b B 01 B b

2 i 2�ir � p q , i � 0, 1, 2 .i0 b b( )i

Here andp � 1 � q � P(AFB) � p � d/P p � 1 �B B b

. Also, andq � P(AFb) � p � d/Q p � 1 � q P � 1 �b

are the frequencies of alleles A and B, respectively,Q
and is the disequilibrium coefficient be-d � P(AB) � pP
tween them. The probability that both offspring are af-
fected is

2 2

2P(ASP) � a v v .�� ij Ai Aj
i�0 j�0

Transmission Probabilities

To describe the parent-offspring transmission proba-
bility tij, we use Ti to denote the event that the hetero-
zygous parents in a family transmit i copies of allele B
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to the two offspring, for . With this nota-i � 0, 1, ..., 4
tion, we may write

t � P(TFASP, H )ij i j

P(H , T)P(ASPFH , T)j i j i� .
P(ASP)hj

Here,

22 1 ( )P(H , T) � 2v 1 � v , i � 0, 1, 2 ,( )1 i 2( ) B1 B1i

4 214P(H , T) � v , i � 0, 1, ..., 4 .( )2 i 2 B1( )i

(C3)

To complete the description of tij, we must compute
, for , and , forP(ASPFH , T) i � 0, 1, 2 P(ASPFH , T)1 i 2 i

. To do so, we use to denote the event
A

i � 0, 1, ..., 4 P → k
that a parent transmits a total of k copies of allele A to
the two offspring, with a similar definition for .

B

P → k
With this notation,

2 2

P(ASPFH , T) � D y ,��j i kl klij
k�0 l�0

where and M and F de-
A A

D � D � P(ASPFM → k, F → l)kl lk

note the mother and father, respectively. Also, y �klij

. Values for Dkl are given as
A A

P(M → k, F → lFH , T)j i

follows: , , and ; and2 2D � f D � f f D � f22 2 21 2 1 20 1

, , and . Also,1 2 2D � (f f � f ) D � f f D � f11 2 0 1 10 1 0 00 02

, for , where1y � (r w � r w ) i � 0, 1, 2 r �kli1 ki l li k rs2

and . Val-
A B A

P(P → rFG � 1, P → s) w � P(P → rFG ( 1)B r B

ues for rrs are shown in the following table:

s
r 0 1 2
0 q q q q .b B b B

1 0 p q � p q 0B b b B

2 p p p pb B b B

In addition,

1 12 2w � w (q � p q ) � w (q � p q ) ,0 0 b b b 2 B B B2 2

w � w p q � w p q ,1 0 b b 2 B B

1 12 2w � w (p � p q ) � w (p � p q ) ,2 0 b b b 2 B B B2 2

where , for . Finally, values forw � v /(v � v ) i � 0, 2i Bi B0 B2

ykli2, for , are shown below:i � 0, 1, ..., 4

i ykli2

0 r rk0 l0

1 (r r � r r )/2k0 l1 k1 l0 .
2 (4r r � r r � r r )/6k1 l1 k0 l2 k2 l0

3 (r r � r r )/2k2 l1 k1 l2

4 r rk2 l2

We assume Hardy-Weinberg proportions for the pa-
rental marker genotypes. Under this assumption, v �A2

, , and , where is the fre-2 2p v � 2pq v � q p � 1 � qA1 A0

quency of allele A. Similarly, , , and2v � P v � 2PQB2 B1

, where is the frequency of allele B.2v � Q P � 1 � QB0

Therefore, the heterozygosity probability hj and the tran-
sition probability tij depend only on the frequencies p
and P of alleles A and B, respectively; their disequilib-
rium coefficient d for the parental population; and the
penetrances f0, f1, and f2 at the disease locus.

We conclude by noting that, under the null hypothesis
of no disease gene on the chromosome, the transmission
probability tij at any marker locus t reduces to t �ij

. By substituting equations (C1–C3) into thisP(H , T)/hj i j

equation and using the results in equations (5) and (6),
we obtain for St a null asymptotic mean of 0 and an
asymptotic variance of 1. By invoking the central limit
theorem, we see that, for a large N, the marginal dis-
tribution of each statistic St is asymptotically the non-
negative part of a standard Gaussian.
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